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Abstract 
The purpose of this project is to inspect the current design of an airplane’s landing gear and find out how 
to improve it. It is impossible to improve the landing gear in every way without it losing some efficiency 
in another category. In this case, design improvements need to be made in specific areas with the intent of 
improving the design at the speed the airplane will land at, where the landing gear is needed most.  

The best way to see the changes made to the design of the landing gear is to plot the magnitude of the 
amplitude of the landing gear vs. the frequency of the system. The frequency that corelates to the speed of 
the airplane as it is landing is determined to be around 30 rad/s. The amplitude of the new designs needs 
to fall below .145 m at the 30 rad/s frequency value. The landing gear consisted of a spring and a damper 
so these values could either increase or decrease to improve the system. When the spring constant value is 
increased, the peak on the amplitude graph shifts to the right and shifts left when the spring constant value 
is decreased. Likewise, when the damping constant is increased or decreased, the amplitude peak will 
shift down or up respectively.  

Since there is not a design that will be better than all others in every category, 3 potential designs are 
needed that all meet the criteria of the amplitude magnitude remaining below .145 m at 30 rad/s. With 3 
reasonable designs ready, the next step is to determine which is the best option for the landing gear. This 
is done by evaluating the designs based on how well they function, the feasibility of the designs, and how 
available resources are for the designs. 

Although all 3 of the potential designs had commercially available springs and would therefore be 
economically viable options, 2 of the designs would make the landing gear too bulky which would 
decrease the usable space for storage and seating. The design that proved to be the most practical and was 
ultimately selected was not only much more compact but also had a higher damping constant which 
would provide a soother landing for the airplane and improve the comfort of the passengers. 

With a design selected, the next test was to see how the design holds up over an unforeseen change in the 
runway surface. This is done using the Fourier expansion formula to evaluate what frequency value of the 
design might be an issue by comparing the frequency produced by the motion over the unforeseen change 
in the runway to the natural frequency of the landing gear system.  
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1. Problem Formulation 
 

 

Figure 1, Picture of the Given Model 

This is a simplified view of an airplane's landing gear as it travels over a landing surface. The runway 
landing surface’s motion can be described by the function y(t). The function x(t) describes the vertical 
motion from the static equilibrium position as it travels over the runway surface. The wavelength of the 
runway is 12m, the runway surface amplitude is described by 𝑌௢, and the velocity of the landing gear is to 
the right of the figure. The mass of the object is given as m = 2000 kg and the spring and damper 
constants are noted in the figure by k and c respectively.  

 

Figure 2, Free Body Diagram 

 
From the free body diagram, Newtons 2nd Law can be used to derive the Equations of Motion (EOM). 
 

𝑚𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 = 𝑐𝑦̇ + 𝑘𝑦, where 𝑦(𝑡) = 𝑌଴ cos(𝜔𝑡) 
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From the EOM, the particular solution 𝑥௣(𝑡) can then be derived. Only the final form is shown below but 

the whole derivation is explained in Appendix B. 

𝑥௣(𝑡) = ห𝑋෨ห𝑒௜(ఠ௧ି థ)  where ห𝑋෨ห and 𝜙 are given by  

ห𝑋෨ห = 𝑌଴ ቮඨ
(𝑘)ଶ + (𝑐𝜔)ଶ

(𝑘 − 𝑚𝜔ଶ)ଶ + (𝑐𝜔)ଶቮ 

𝜙 =  tanିଵ
𝑐𝑚𝜔ଷ

𝑘(𝑘 − 𝑚𝜔ଶ) + (𝑐𝜔)ଶ
 

Periodic Force EOM and Steady State Response 

Using the given square wave surface, a Fourier series can be used to approximate the corresponding 
function, external to the system. Because this computed y(t), shown below, takes the same form as the 
original external function, the computed particular solution looks very similar to the last particular solution. 
Now, replacing 𝑌଴ is the constant 𝑏௝ and replacing 𝜔 is the combination of 𝑗𝜔଴. However, unlike the last 

response, there is also now an infinite series of contributing values where j is any odd integer instead of just 
two terms. The Fourier series approximation, EOM, and particular solution are all shown below and the 
complete derivation along with the graph of the square wave can all be found in appendix C. 

𝑦(𝑡) ≅ ෍
4𝐴

𝑗𝜋
sin 𝑗𝜔଴𝑡

ஶ

௝ୀଵ,ଷ,ହ

 

𝑚𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 = 𝑐 ෍ 𝑖𝑗𝜔଴𝑏௝𝑒௜௝ఠబ௧

ஶ

௝ୀଵ,ଷ,ହ

+ 𝑘 ෍ 𝑏௝𝑒௜௝ఠబ௧

ஶ

௝ୀଵ,ଷ,ହ

 

𝑥௣(𝑡) = ෍ ห𝑋ఫ
෩ ห𝑒௜൫௝ఠబ௧ି థೕ൯

ஶ

௝ୀଵ,ଷ,ହ

 

ห𝑋ఫ
෩ ห = 𝑏௝ ቮඨ

(𝑘)ଶ + (𝑐𝑗𝜔଴)ଶ

(𝑘 − 𝑚(𝑗𝜔଴)ଶ)ଶ + (𝑐𝑗𝜔଴)ଶቮ 

𝜙௝ =  tanିଵ
𝑐𝑚(𝑗𝜔଴)ଷ

𝑘(𝑘 − 𝑚(𝑗𝜔଴)ଶ) + (𝑐𝑗𝜔଴)ଶ
 

 where 𝑏௝ =
ସ஺

௝గ
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Figure 3, Orientation of Vertical and Diagonal Springs 

This diagram represents the orientation of the springs in our design. Each design option evaluated 
involves a single vertical spring which is surrounded by several diagonal springs (Figure 8, Figure 9, and 
Figure 10). Each diagonal spring (Ad shown in orange in Figure 3) is connected to the vertical spring (Av 
shown in blue above) by two links L1 and L2 (shown in green in Figure 3). Using a ratio of the links 
where the length of L2 is greater than L1, we can reduce the amplitude of the motion of the diagonal 
spring relative to the amplitude of the vertical spring, which experiences the total movement of the wheels 
in the landing gear.  In commercially available springs, as amplitude or travel of the spring is increased, 
the maximum k value is reduced. By reducing the travel of the diagonal spring, larger k value springs can 
be selected to meet the design requirements for the landing gear while still allowing the landing gear to 
travel the required amplitude. While the vertical spring is fully contributing to the k value of the system, 
only the cosine component of the theta angle of the diagonal springs (Figure 3) will contribute to the k 
value. 

𝛳 = angle between the vertical and diagonal springs 

𝑅 =
𝐿ଶ

𝐿ଵ
= 𝐿𝑖𝑛𝑘 𝑅𝑎𝑡𝑖𝑜 
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𝐴௩ = vertical amplitude 

𝐴ௗ = Diagonal amplitude, which is the distance that the diagonal spring moves 

𝐴ௗ,௘௤ = The distance the diagonal spring moves when the link ratio is factored in. 

N = number of diagonal springs 

Kv = K value of vertical spring 

Kd = K value of diagonal spring 

𝐴ௗ =
𝐴௩

𝑐𝑜𝑠𝜃
 

𝐴ௗ,௘௤ =
𝐴ௗ

𝑅
 

𝐾௦௬௦ = 𝐾௩ + 𝑁𝑐𝑜𝑠(𝜃)𝐾ௗ 

 

2. Simulations and Results 
Table 1, Properties for Original and Proposed Designs 

 Original Design 1 Design 2 Design 3 
m 2000 kg 2000 kg 2000 kg 2000 kg 
c 23892.8 kg/s 47785.6 kg/s 83624.8 kg/s 23892.8 kg/s 
k 4099768.2 N/m 5124710.25 N/m 3074826.15 N/m 6149652.3 N/m 
ωn 45.275 rad/s 50.619 rad/s 39.209 rad/s 55.451 rad/s 

 

Once we obtained our derived equation, we created code on MATLAB. In this code, we plugged in the 
derived equation for the steady state motion of the landing gear, along with the values that we initially 
calculated for the spring and damping constants. The derivation of the c, k, and ωn values can be found in 
Appendix A. After obtaining the original c, k, and ωn values, we calculated what we believed to be 3 suitable 
designs for the gear since they remained below .145 m at the operating frequency of the runway surface: 

1. Initially, we increased and decreased the c and k values by 25% of their original value. This showed 
us how the landing gear behaved when each value is manipulated. 

2. Upon further examination, it became clear that that increasing/decreasing k shifted the peak of the 
amplitude magnitude to the right/left respectively and increasing/decreasing c shifted the peak of 
the amplitude magnitude up/down respectively. 

3. After altering the values to find out how to make the amplitude magnitude stay below .145 m at the 
operating frequency, 3 potential design candidates that fulfilled these criteria were created. 
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Figure 4, Amplitude vs. Frequency of the Landing Gear 

 

 
Figure 5, Phase Angle vs. Frequency of the Landing Gear 
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In practice, aircraft landing gear use a system called an oleo strut to provide the necessary spring/damper 
system to dissipate the energy transferred from the runway impacts (Figure 6). The oleo system design was 
patented by a British machine gun manufacturing company called Vickers Armstrong in 1915. The recoil 
mechanism design came from a WWI machine gun. In addition to the oleo system, the landing gear includes 
other trunnion braces and actuators to raise, lower and lock the landing gear in place that also provide spring 
and damping forces to the landing gear. The oleo system is essentially a shock absorber with two chambers, 
one filled with hydraulic fluid, and one filled with an inert gas like nitrogen, thar are separated by an orifice 
(Figure 7). A piston that is connected to the aircraft wheels is in the lower liquid filled chamber.  As the 
wheel moves up and down, it forces hydraulic fluid through the orifice compressing nitrogen in the upper 
chamber. As the gas is compressed is acts like a spring absorbing the energy transferred from the wheel 
through the piston. Once the energy is reduced, there is a recoil action as the gas expands pushing the 
cylinder back down into the lower chamber. The use of nitrogen is important as this process generates heat 
and using an inert gas prevents the occurrence of a fire. The size of the oleo system and orifice between the 
upper and lower chambers is designed specifically to meet the needs of each aircraft.  The oleo system 
provides the spring/damper system in a compact, lightweight package that allows the landing gear system 
to make up less than 5% of the weight of most commercial aircraft. 

 

Figure 6, Typical Landing Gear Equipment including Oleo System (Mouritz, 2012) 
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Figure 7, Oleo System showing compression of gas as piston travels upward (Olson, 2019) 

For our project, we greatly simplified the design by using a combination of compression springs and 
linkages to mimic a central support system surrounded by trunnion braces as in Figure 5. Once we chose 
our 3 designs, we modelled them on an Excel file. For the basic layout, we chose to include one central 
spring that was positioned vertically surrounded by four that were positioned diagonally. Each diagonal 
spring is connected to the central vertical spring by two links with a pin connection. While the central spring 
would travel vertically up and down the entire range of the motion of the landing gear the ratio of the links 
would allow the springs on the diagonal springs to travel a much smaller distance. By reducing the travel 
distance, much larger k values can be achieved using compression springs. To get closer to the intended k 
value, we examined various combinations commercially available springs, angles of the diagonal springs, 
link ratios, and if necessary, the addition of more pairs of diagonal springs. Commercial springs selected 
for the final design choice can be found in Appendix D. 

Ultimately, we chose design 2 (Figure 9), as it was the most practical option. Design 1 and design 3 were 
both possible to attain using commercially available springs, but they possessed characteristics that are not 
desirable for passenger aircraft. Since most jet aircraft have retractable undercarriage, which are housed 
inside the fuselage, it is preferable that they are as compact as physically possible to allow for more room. 
Design 1 (Figure 8), which required a link ratio of 22:1, is far wider than the other two design options, so 
it is likely to be more difficult to fit inside the aircraft. Design choice 3 (Figure 10), which required 6 
diagonal springs instead of 4, is a more complex option, and therefore, it is likely to be less economical and 
heavier than design choice 1. The c-value of design choice 2, which is larger than the other two designs, 
means that design 2 with its higher damping constant should be preferred by passengers on the plane 
compared to the other two design choices. Design 2 should have less vibration cycles after bumps in the 
runway when compared to the other two landing gear design options. 
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Figure 8, Diagram of Design 1 Springs 

 

 

 



MAE-315-001 Spring 2022 North Carolina State University 
Project 1, Landing Gear Design Project 
 

Department of Mechanical & Aerospace Engineering 

Group 18  
 

  Page 11 of 22 
 

 

Figure 9, Diagram of Design 2 Springs 
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Figure 10, Diagram of Design 3 Springs 
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Figure 11, Steady State Motion of the Landing Gear During Takeoff and Landing 

 

 
Figure 12, Plot of the Fourier Series Approximation 
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Square Wave Response Evaluation 

When examining the interaction of a system and its surrounding forces, it is important to find the places 
where resonance is expected to occur. In the scenario where the external function is represented by the 
Fourier series approximation for the square wave, there are an infinite number of terms. However, every 
term does not need to be evaluated. Instead, the values should be found where 𝑗𝜔଴ ≅ 𝜔௡. To do this, the 

equation is rearranged (𝑗 ≅
ఠ೙

ఠబ
) to find the closest possible value of j for each of the designs. The results 

are shown in table 2 below: 

Table 2, Frequency Component Comparisons 

 Original Design 1 Design 2 Design 3 
ωn (rad/s) 45.275  50.619  39.209  55.451  
ω0 (rad/s) 14.544 14.544 14.544 14.544 
j 3.11 3.48 2.69 3.81 

 

From this, the closest frequency component that would be the most likely to cause concern is j = 3 (𝜔଴ =

43.632) . However, none of the designs fall particularly close to j = 3 except for the original one. To still 
check and make sure this will not be a problem, the amplitude for the j = 3 term was calculated for the 
original design which was the closest to the j value using the previously derived amplitude equation below: 

ห𝑋ఫ
෩ ห = 𝑏௝ ቮඨ

(𝑘)ଶ + (𝑐𝑗𝜔଴)ଶ

(𝑘 − 𝑚(𝑗𝜔଴)ଶ)ଶ + (𝑐𝑗𝜔଴)ଶቮ 

When the values for the original design were plugged in with the term j = 3, it was found that the amplitude 
of the function was about 0.116 m which is not a problem as it still falls under the max desired amplitude. 
Because this was the case that fell closest to resonating with the square wave and the resulting amplitude 
was not a problem, it reasons that this frequency component should not be a cause for concern. 

3. Conclusion 
The purpose of this project was to develop a working, feasible, and economically viable landing gear 
design that could replace a current, less practical design. After inspecting the current design, it became 
clear that certain alterations could improve the operation of the landing gear as the airplane approaches its 
landing speed. This was accomplished by improving the spring and damper of the landing gear by 
observing how different springs and dampers behaved under the same conditions. One technique that was 
used at this point in the project was to hold the damper value constant and change the spring’s value until 
a sufficient outcome was achieved and then change the damper value, while the spring value remained the 
same, until the landing gear reached the following outcome. If the magnitude of the amplitude fell under 
the selected value of .145 m at the frequency of the landing gear as the airplane lands, the designs passed 
the first test. These designs were then tested based on the conditions listed above such as feasibility, 
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customer value, and more. The design that was selected easily falls under the amplitude magnitude and 
will be very straight forward to replicate physically. Since this design has spring and damping values very 
close to that of the original design, there will not be any issues with technological limitations that would 
make the design nearly impossible to achieve. 

The work done on this project will be extremely useful in any future projects that deal with the altering of 
the landing gear of an airplane. Although the work done in this project is specific to the original landing 
gear design and the 3 designs that successfully fit the necessary criteria of the runway landing, this 
process can be used to find out how landing gear operates on a landing surface different than the one this 
project used. It will be possible to see if and where a landing gear design will run into problems while it 
travels over unforeseen landing surfaces.  

4. Appendix A 

Logarithmic Decrement of the Original Landing Gear Motion 

 

Figure 7, Logarithmic Decrement Given 

From this image of the transient motion, it is estimated that the first peak of the logarithmic decrement 𝑥ଵ 
occurs around .09 m and the second 𝑥ଶ occurs at .039 m. The time constant 𝜏ௗ (the distance between the 
peaks on the logarithmic decrement) is about .14 sec.  

Using the logarithmic decrement (𝛿) equation: 
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𝛿 = 𝑙𝑛 ൬
𝑥ଵ

𝑥ଶ
൰ = 𝑙𝑛 ൬

. 09 𝑚

. 039 𝑚
൰ = .836 

Next, using the damping ratio (𝜁) equation: 

𝜁 =
𝛿

ඥ(2𝜋)ଶ + (𝛿)ଶ
=

(.836)

ඥ(2𝜋)ଶ + (. 836)ଶ
= .1319 

Now there is enough information to solve for the natural frequency (𝜔௡): 

𝜔௡ =
𝛿

(𝜁)( 𝜏ௗ)
=

. 836

(.1319)(.14 𝑠𝑒𝑐)
= 45.28 𝑟𝑎𝑑

𝑠𝑒𝑐ൗ  

Using the natural frequency, solve for the spring constant (k) and damping constant (c) values for the 
original landing gear system: 

𝜔௡ = ඨ
𝑘

𝑚
  

𝑘 = (𝜔௡)ଶ(𝑚) = (45.28 𝑟𝑎𝑑
𝑠𝑒𝑐ൗ )ଶ(2000 𝑘𝑔) = 4099768.2 𝑁

𝑚ൗ  

2 𝜁𝜔௡ =
𝑐

𝑚
 

𝑐 = 2 𝜁𝜔௡𝑚 = 2(.1319)(45.28 𝑟𝑎𝑑
𝑠𝑒𝑐ൗ )(2000 𝑘𝑔) = 23892.8 𝑘𝑔

𝑠ൗ  

5. Appendix B 

Derivation of the particular solution 
From the free body diagram, Newtons 2nd Law can be used to derive the Equations of Motion (EOM). 

෍ 𝐹௬ = 𝑚𝑥̈ 

−𝑐(𝑥̇ − 𝑦̇) − 𝑘(𝑥 − 𝑦) = 𝑚𝑥̈ 

After rearranging the terms related to the system on the left and the terms related to the external forces on 
the right, the EOM takes the form of: 

𝑚𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 = 𝑐𝑦̇ + 𝑘𝑦 

The given equation for the forcing function is: 𝑦(𝑡) = 𝑌଴ cos(𝜔𝑡) where 𝑌଴ is the amplitude, 𝜔 is the forcing 
frequency, and t is the time 

But for now, assume 𝑦(𝑡) = 𝑌଴𝑒௜ఠ௧ and 𝑦̇(𝑡) = 𝑖𝜔𝑌଴𝑒௜ఠ௧  

Plugging 𝑦̇ and 𝑦 into the EOM and rearranging to group the common exponential term: 
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𝑚𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 = 𝑐(𝑖𝜔𝑌଴𝑒௜ఠ௧) + 𝑘(𝑌଴𝑒௜ఠ௧) 

𝑚𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 = 𝑌଴(𝑘 + 𝑖𝑐𝜔)𝑒௜ఠ௧ 

To simplify, call 𝑌෨ = 𝑌଴(𝑘 + 𝑖𝑐𝜔) 

Assume particular solution and velocity and acceleration derivatives: 

 𝑥௣(𝑡) = 𝑋෨𝑒௜ఠ௧, 𝑥௣̇(𝑡) = 𝑖𝜔𝑋෨𝑒௜ఠ௧, 𝑥௣̈(𝑡) = −𝜔ଶ𝑋෨𝑒௜ఠ௧ 

Now plugging the particular solution into the equation of motion and rearranging to group the common 
exponential term this becomes: 

𝑚൫−𝜔ଶ𝑋෨𝑒௜ఠ௧൯ + 𝑐൫𝑖𝜔𝑋෨𝑒௜ఠ௧൯ + 𝑘൫𝑋෨𝑒௜ఠ௧൯ = 𝑌෨𝑒௜ఠ௧ 

[(𝑘 − 𝑚𝜔ଶ) + 𝑖𝑐𝜔]𝑋෨𝑒௜ఠ௧ = 𝑌෨𝑒௜ఠ௧ 

Because the left and right side of the equations take on a similar form, the constants in front of the 
exponential term can be equated and used to solve for 𝑋෨. 

𝑋෨ =
𝑌෨

[(𝑘 − 𝑚𝜔ଶ) + 𝑖𝑐𝜔]
 

Plugging 𝑋෨ and 𝑌෨  back into the assumed particular solution: 

𝑥௣(𝑡) =
𝑌଴(𝑘 + 𝑖𝑐𝜔)

[(𝑘 − 𝑚𝜔ଶ) + 𝑖𝑐𝜔]
𝑒௜ఠ௧ 

To write this equation in a non-complex manner, the terms are converted into polar form: 

𝑥௣(𝑡) = 𝑌଴ ቮඨ
(𝑘)ଶ + (𝑐𝜔)ଶ

(𝑘 − 𝑚𝜔ଶ)ଶ + (𝑐𝜔)ଶቮ
𝑒௜థభ

𝑒௜థమ
𝑒௜ఠ௧ 

After rearranging the exponential terms and combining the 2 phase angles into a single value            

𝜙 =  𝜙ଶ − 𝜙ଵ, the particular solution can now be written in its final form: 

𝑥௣(𝑡) = ห𝑋෨ห𝑒௜(ఠ௧ି థ)  where ห𝑋෨ห and 𝜙 are given by  

ห𝑋෨ห = 𝑌଴ ቮඨ
(𝑘)ଶ + (𝑐𝜔)ଶ

(𝑘 − 𝑚𝜔ଶ)ଶ + (𝑐𝜔)ଶቮ 

𝜙 =  tanିଵ
𝑐𝑚𝜔ଷ

𝑘(𝑘 − 𝑚𝜔ଶ) + (𝑐𝜔)ଶ
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6. Appendix C 

Fourier Series Approximation Derivation for Square Wave 
Figure 8 represents the shape of a stretch of ground and is said to continue for 6 cycles.  

 

Figure 8, Unforeseen Motion of the Base as a Function of x 

 

Because the square wave graph shown above is originally given in terms of x distance vs. y displacement, 
these terms must first be translated into a time dependent graph. This can be done using the given velocity 
and wavelength obtained from the graph to calculate the function frequency. 

𝜏 =
𝜆

𝑣
 

Where 𝜏 is the period of the function in (s), 𝜆 is the wavelength in (m) obtained from the given graph 
figure 8 and v is the velocity of the examined landing gear in (m/s). From this, a function for the new 
parameterization can now be obtained which is shown in figure 9. Only the first cycle will be examined 
using the Fourier Series Approximation, but the same equation can be applied to the next 5 cycles of 
repetitive motion. The square wave can be written using a piecewise function to break each cycle into two 
parts: 

 
Figure 9, Unforeseen Motion of the Base as a Function of t 

 

൞
𝑓(𝑡) = 𝐴      𝑓𝑜𝑟 0 < 𝑡 <

𝜏

2

𝑓(𝑡) = −𝐴      𝑓𝑜𝑟 
𝜏

2
< 𝑡 < 𝜏

 

𝜏

2
 𝜏 

𝑡 

𝑦(𝑡)
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Where A is the amplitude of the wave in (m), t is time in (s), and 𝜏 is the period found above. Next, the 
fundamental frequency (𝜔଴ in rad/s) can be calculated again using the period found above: 

𝜔଴ =
2𝜋

𝜏
 

The Fourier Series is written in the form: 

𝑦(𝑡) ≅
𝑎଴

2
+ ෍ 𝑎௝ cos 𝑗𝜔଴𝑡 + 𝑏௝ sin 𝑗𝜔଴𝑡

ஶ

௝ୀଵ

 

Where 𝑎଴, 𝑎௝ , 𝑏௝ are all harmonics derived with respect to the given function and j is an integer. The 

derivation of 𝑏௝ is as follows: 

𝑏௝ =
2

𝜏
න 𝑓(𝑡) sin 𝑗𝜔଴𝑡 𝑑𝑡

ఛ

଴

 

The integral can be broken into two parts to accommodate the piecewise function f(t) and bounds set 
accordingly. 

𝑏௝ =
2

𝜏
൥න 𝐴 sin 𝑗𝜔଴𝑡 𝑑𝑡

ఛ
ଶ

଴

+ න −𝐴 sin 𝑗𝜔଴𝑡 𝑑𝑡
ఛ

ఛ
ଶ

൩ 

Now this function can be integrated and rearranged to simplify. 

𝑏௝ =
2

𝜏
቎൤−

𝐴

𝑗𝜔଴
cos 𝑗𝜔଴𝑡൨

𝜏
2
0

− ൤−
𝐴

𝑗𝜔଴
cos 𝑗𝜔଴𝑡൨

𝜏
𝜏
2

቏ 

𝑏௝ =
2

𝜏
∗

𝐴

𝑗𝜔଴
ቂቀ− cos 𝑗𝜔଴

𝜏

2
+ cos 0ቁ + ቀcos 𝑗𝜔଴𝜏 − cos 𝑗𝜔଴

𝜏

2
ቁቃ 

 Plugging in 𝜔଴ =
ଶగ

ఛ
 to this equation and combing terms this becomes: 

𝑏௝ =
𝐴

𝑗𝜋
[cos 2𝑗𝜋 − 2 cos 𝑗𝜋 + 1] 

Because of the nature of the cosine function, different results will be obtained when using even and odd 
numbers. To see this phenomenon, two different cases will be examined. First, plugging in an odd multiple 
of j: 

𝑏ଷ =
𝐴

3𝜋
(cos 6𝜋 − 2 cos 3𝜋 + 1) =  

𝐴

𝜋
 (1 − 2(−1) + 1) =

4𝐴

3𝜋
 

From this, it is found that for any odd value of j, 𝑏௝ =
ସ஺

௝గ
. Now substituting in an even value for j: 
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𝑏ଷ =
𝐴

2𝜋
(cos 4𝜋 − 2 cos 2𝜋 + 1) =  

𝐴

𝜋
 (1 − 2(1) + 1) = 0 

Thus, for any even value of j, 𝑏௝ will wind up being equal to zero. The equations for calculating 𝑎଴ and 𝑎௝ 

follow a similar form and are shown below.  

𝑎଴ =
2

𝜏
න 𝑓(𝑡)𝑑𝑡

ఛ

଴

 

𝑎௝ =
2

𝜏
න 𝑓(𝑡) cos 𝑗𝜔଴𝑡 𝑑𝑡

ఛ

଴

 

After following the same method to derive 𝑎଴ and 𝑎௝, it is found that 𝑎଴ = 0 and 𝑎௝ = 0Therefore, when 

substituting all constants back into the original form of the Fourier Series, the only contributing term is the 
sine component and within that, only odd values of j must be examined. Written out, this approximation of 
the square wave function takes the form of: 

𝑦(𝑡) ≅ ෍
4𝐴

𝑗𝜋
sin 𝑗𝜔଴𝑡

ஶ

௝ୀଵ,ଷ,ହ
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7. Appendix D 
Springs used for design 2 
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